
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

INFERRING THE PRESENCE OF REVERSE PROXIES
THROUGH TIMING ANALYSIS

by

Daniel R. Alexander

June 2015

Thesis Co-Advisors: Geoffrey Xie
Robert Beverly

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

06-19-2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 07-05-2013 to 06-19-2015
4. TITLE AND SUBTITLE

INFERRING THE PRESENCE OF REVERSE PROXIES THROUGH TIMING ANAL-
YSIS

5. FUNDING NUMBERS

1127506

6. AUTHOR(S)

Daniel R. Alexander

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Science Foundation
4201 Wilson Blvd., Arlington, VA 22230

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis presents a method for inferring the presence of a reverse proxy server using packet timing analysis from the vantage
point of a client system. This method can determine whether Internet users are receiving web content from the actual source or from
some potentially spoofed proxy device; leading to better risk assessment and understanding of the cyber terrain. By using only the
measurement and comparison of three-way handshake and content request/delivery packet round trip times, we identify an accurate
classifier that detects the presence of a reverse proxy server with over 98% accuracy. This is an improvement over other inference
methods because all measurements can be done from an external client machine. A secondary yet significant contribution is the robust
data set that was produced as a result of this research. We have collected a set of over 6 million data points from a known set of 30
globally dispersed machines, which was instrumental in our research efforts and will be used for further studies and exploration.

14. SUBJECT TERMS

Active Measurement, Timing Analysis, Reverse Proxy, Machine Learning, Inference, Classification
15. NUMBER OF

PAGES 65
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

INFERRING THE PRESENCE OF REVERSE PROXIES THROUGH TIMING
ANALYSIS

Daniel R. Alexander
Major, United States Army

B.A., Colorado State University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2015

Author: Daniel R. Alexander

Approved by: Geoffrey Xie
Thesis Co-Advisor

Robert Beverly
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis presents a method for inferring the presence of a reverse proxy server using
packet timing analysis from the vantage point of a client system. This method can deter-
mine whether Internet users are receiving web content from the actual source or from some
potentially spoofed proxy device; leading to better risk assessment and understanding of
the cyber terrain. By using only the measurement and comparison of three-way handshake
and content request/delivery packet round trip times, we identify an accurate classifier that
detects the presence of a reverse proxy server with over 98% accuracy. This is an improve-
ment over other inference methods because all measurements can be done from an external
client machine. A secondary yet significant contribution is the robust data set that was pro-
duced as a result of this research. We have collected a set of over 6 million data points from
a known set of 30 globally dispersed machines, which was instrumental in our research
efforts and will be used for further studies and exploration.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 INTRODUCTION 1
1.1 Problem Statement. 2

1.2 Research Description and Hypothesis 4

1.3 Organization . 5

2 BACKGROUND AND RELATED WORK 7
2.1 Fundamental Knowledge . 7

2.2 Previous Work . 10

3 METHODOLOGY 15
3.1 Data Collection . 15

3.2 Data Analysis. 22

4 RESULTS AND ANALYSIS 25
4.1 Data Set Acquired . 25

4.2 Initial Training Set Results . 29

4.3 Performance of Initial Classifier on Test Set 30

4.4 Adjusting the Methodology . 33

4.5 Evaluating the Strength of the Classifier 34

5 CONCLUSIONS AND FUTURE WORK 39
5.1 Conclusions . 39

5.2 Future Work . 40

List of References 43

Initial Distribution List 47

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 2.1 Transmission Control Protocol (TCP) Three-Way Handshake (3WHS)
timing diagram . 8

Figure 2.2 Hypertext Transfer Protocol (HTTP) timing diagram 9

Figure 3.1 Map of PlanetLab nodes used 16

Figure 3.2 The three different instances of timing measurement configurations 17

Figure 3.3 Permutation of a web request iteration 20

Figure 3.4 Side by side comparison of web request by direct connection and via
reverse proxy . 22

Figure 4.1 Comparison of GET/3WHS ratios 28

Figure 4.2 Initial division of the data into training and testing sets 29

Figure 4.3 Modified subset method on data set 34

Figure 4.4 Graph of classifier performance when adjusted by 10% higher and
lower . 35

Figure 4.5 Use of Cumulative Distribution Function (CDF) to adjust acceptable
threshold to meet objective . 36

Figure 4.6 Graph of adjusted classifier performance on reverse proxies re-
motely connected to the web servers 38

Figure 4.7 Graph of adjusted classifier performance on reverse proxies locally
connected to the web servers 38

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 3.1 Confusion matrix template . 23

Table 4.1 Summary of flows captured . 26

Table 4.2 Sample of data in table of captured flows 29

Table 4.3 Confusion matrix of classifier on test set 30

Table 4.4 Comparison of evaluation of classifier on initial 80/20 split and after
5-fold cross validation with classification tree learning 32

Table 4.5 Final results of classifier performances with sample bias removed 34

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

3WHS Three-Way Handshake

CDF Cumulative Distribution Function

CDN Content Distribution Network

CPU Central Processing Unit

DMZ Demilitarized Zone

DNS Domain Name Server or Domain Name Service

DoD Department of Defense

DoS Denial of Service

DDoS Distributed Denial of Service

FN False Negative

FP False Positive

HIPAA Health Insurance Portability and Accountability Act of 1996

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IoT Internet of Things

IP Internet Protocol

IPv6 Internet Protocol version 6

ISP Internet Service Provider

MTU Maximum Transmission Unit

xiii

NDSS Network and Distributed System Security

NIC Network Interface Card

NIST National Institute of Standards and Technology

NPS Naval Postgraduate School

NPV Negative Predictive Value

PDU Protocol Data Unit

PPV Positive Predictive Value

RFC Request For Comments

RTT Round Trip Time

US United States

TCP Transmission Control Protocol

TN True Negative

TP True Positive

TSO TCP Segmentation Offload

UDP User Datagram Protocol

XML Extensible Markup Language

xiv

Acknowledgments

I wish to express my sincere appreciation to Dr. Geoffrey Xie and Dr. Robert Beverly,
whose patient guidance and advice have been invaluable. They have both, each in their
own way, continued to raise the bar and inspire me to reach it every time. I consider myself
very lucky to have had the opportunity to learn from such brilliant professionals.

I’d like to thank the National Science Foundation for their role in supporting this thesis.
Their efforts to advance research and education in science and engineering will surely con-
tinue to make America great.

I’d also like to thank, and congratulate my peers in Cohort 368-141. Many hours of pain
and suffering were shared as well as many more late-night and weekend communications.
Their camaraderie, collaboration, humor, and friendship made this experience thoroughly
rewarding. It is unfortunate that none of them are members of the best branch of the military
but if they decide to visit, I will have a reflective belt ready for them.

Finally, and most importantly, I’d like to acknowledge with gratitude, the support and love
of my wife and children. Their encouragement throughout this process was pivotal to the
success of this thesis and to every other challenge put before me. The sacrifices they make
are greatly appreciated and to them I owe a most profound debt of gratitude.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
INTRODUCTION

Any attempt at ensuring that a given interaction between two parties is legitimate must be
built upon the confidence that those involved are either the expected participants or their
designated representatives. This is evident in just about every aspect of our lives. Banks
require proof of identity before accepting or paying out money to customers. Libraries
require identification before checking out books. Retail outlets are supposed to verify iden-
tity before accepting credit card payments. The point is that if identities cannot be verified
then the information, products, or services received cannot be readily trusted to be authen-
tic. Why then, are people so willing to accept data from web servers without a second
thought as to whether they are getting it from an original, authentic source or from some
intermediate proxy that could potentially be a malicious back end or spoofed device?

This is not to say that there are no protocols or methods that can protect users from blindly
accepting web content. For example, digital certificates are used to provide mutual authen-
tication between clients and servers on many of today’s web sites. While these mechanisms
exist, they are not ubiquitous. Many providers do not employ such technical solutions be-
cause of the added expense or complexity that comes with them.

The increasing global dependence on the Internet, as well as the expanding deployment of
Internet Protocol version 6 (IPv6), is creating an environment where nearly every device
imaginable can and does connect to the Internet. In fact, the number of IPv6 addresses
available for devices is so astronomically huge that we will not likely ever see the day
when every IPv6 address is allocated and in use. Nonetheless, the global community is
connecting a colossal Internet of Things (IoT) at a blistering pace. We do not just connect
our home computers anymore. We have managed to interconnect nearly every aspect of
our lives, big and small. Devices such as home security systems, mobile devices, medical
instruments, national defense systems, air traffic and energy control systems, all the way
down to bathroom scales and coffee makers. Some estimates put the number of devices on
the Internet between eight and ten billion today and predict that number to jump to forty
billion devices by 2020 [1]. This increased connectivity between systems makes us all

1

more dependent on them and their ability to provide data to anyone, anywhere, anytime.
Along with that dependence comes an even greater need to defend those systems.

Just as crime rates are higher in cities with denser populations, attackers take advantage
of the Internet’s target rich environment. Mega data breaches, evolving targeted attacks,
end-user attitudes toward social media, and vulnerabilities found in the plethora of Internet
devices are only a few of the areas that are being exploited daily by malicious actors and
governments. In 2013 alone, over 552 million identities were compromised “putting con-
sumer’s [sic] credit card information, birth dates, government ID numbers, home addresses,
medical records, phone numbers, financial information, email addresses, login, passwords,
and other personal information into the criminal underground” [2]. That is why it is be-
coming more and more imperative that not only us users, but our devices, know when we
are actually communicating with who we think we are.

Much research has been devoted to source authentication in a variety of fields such as
anthropology, law, retail, and computer science. While no single, foolproof solution has
been found to provide absolute protection, we continue to innovate and discover methods
to strengthen our defense-in-depth strategies.

This thesis builds upon one such concept that was introduced by a former student of the
Naval Postgraduate School (NPS) [3]. It reinforces his findings and makes a significant
contribution to Internet transaction risk assessment methods and topology discovery. This
novel method can determine whether Internet users are receiving web content from the ac-
tual source or from some potentially spoofed proxy device; leading to better risk assessment
and understanding of the cyber terrain.

1.1 Problem Statement
Users are constantly being served content by systems that they are unknowingly connected
to despite employing sophisticated authentication measures and encryption schemes. One
type of these systems, called reverse proxy servers, is used heavily throughout the Internet
for both beneficial and malicious purposes.

By definition, a proxy is a person authorized to act for another [4] and in computer networks
a proxy is a system that performs a service on behalf of another system. There are several

2

types of proxies in use with the most common being a forwarding web proxy server. This
type of server is usually installed at the edge of a computer network to retrieve web content
from the Internet on behalf of the internal requesting clients. Conversely, reverse proxies
provide data on behalf of the origin content provider. They do this by connecting to the
content source providers and returning the data to the requesting client as if it had originated
from the proxy itself. Reverse proxies are therefore used to add extra layers of security to
publicly accessible services by providing content to requesting clients without exposing the
origin servers.

While this provides an effective method of obscuring the origin servers, it is not their only
purpose. They are also used for many other reasons beyond hiding the existence and char-
acteristics of the origin servers such as improving performance and access control.

The ability of reverse proxies to reduce the work load and exposure of web servers is ben-
eficial in many ways. Unfortunately, they also prevent users from being able to accurately
calculate the inherent risk of transactions because they do not know where the original data
is coming from. Reverse proxy servers can be installed at any point between a client and
web server so it makes it difficult to confirm the device, geographical location, network, or
organization that is actually providing the content.

Not knowing the origin of web content may not be a concern for most when it comes
to casual web browsing however, it can be problematic in other situations. For example,
a client can securely connect to a reverse proxy but the back-end connection to the web
server may be unprotected. Whether it be due to negligence of the administrator or honest
misconfiguration of the proxy, it can leave the entire session vulnerable.

The added obfuscation, improved performance, and access control that reverse proxies
provide are all good features of an efficient and secure network. These devices are equally
appealing to cyber criminals for many of the same reasons as they give those individuals
the means to conduct their activities while hiding their true origins.

Malicious actors are very concerned with launching attacks without being detected. They
do this often by using other compromised machines that will mislead and delay investiga-
tors, thus allowing for more time to accomplish their attacks. This is essentially what a

3

reverse proxy does by design. It provides content to a requesting client while only allowing
the client to see the traffic between itself and the reverse proxy. Anything that happens
behind the proxy is unknown to the client.

The threat and scale of attacks are increased exponentially when many compromised ma-
chines are communicating through the Internet via some command channel. This defines
a botnet and it is one of the primary platforms from which Internet attacks are launched
today. Attacks such as Distributed Denial of Service (DDoS), spam, phishing, and identity
theft are commonly launched from botnets and with an average annual cost of just over
$3.5 million per U.S. company [5], they are very expensive. Botnets are often installed
as hosting services and proxy unsuspecting clients to malicious content [6]. One example
to consider is when a botnet has compromised a legitimate reverse proxy and changed the
location from which it retrieves content. Users who visit the website employing the reverse
proxy expect to be served their requested web page but instead are served illegal content or
other malware.

1.2 Research Description and Hypothesis
Our hypothesis was that we could infer the presence of a reverse proxy server by analyzing
the Transmission Control Protocol (TCP) flows from a requesting client’s vantage point
and comparing the Round Trip Time (RTT) of the Three-Way Handshake (3WHS) to that
of the Hypertext Transfer Protocol (HTTP) content delivery. Because they have to forward
requests to an internal device, reverse proxy servers showed an increased RTT for HTTP
content in previous research [3]. The primary question this thesis sought to answer was,
given a set of Internet Protocol (IP) addresses assigned to geographically distributed web
servers known to be operating with and without reverse proxies, could a reliable threshold
classifier learn to accurately detect those that are behind reverse proxy servers?

Subsidiary questions that we answered were:

1. What was the achievable performance (derived from the false positive and false neg-
ative rates) for such a program?

2. Was a packet RTT analysis alone sufficient to determine the presence of a reverse
proxy server?

3. If so, what was the best classifier to determine the presence of a reverse proxy?

4

4. What is the impact of adjusting the optimal classifier by 10% higher or lower?

1.3 Organization
This thesis is organized into five chapters.

Chapter 1 is an introduction and describes the need that our thesis research aims to address.
It explains the concept of the research and summarizes the methodology by which the
primary question will be answered.

Chapter 2 describes the background and related work. We review previous research that
deals with reverse proxy inference and explore other programs and methodologies similar
to ours.

Chapter 3 pertains to our methodology and design considerations and how they apply to
real world problems. We describe how we apply fundamental knowledge to the overall
design to initiate content requests, handle TCP flows, and how we store the resulting data
for follow-on analysis.

Chapter 4 presents our results and analysis. We explain how data was collected, parsed,
and organized and then detail the findings. The focus of this chapter is on what thresholds
were able to be identified and the ability of the classifier to identify reverse proxies.

Finally, Chapter 5 gives our conclusions and recommendations on future work. We con-
clude that an accurate threshold was successfully identified and implemented. Shortfalls
are also discussed and suggestions for future work are presented.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
BACKGROUND AND RELATED WORK

The basis of this research is to leverage the behavior of TCP and the methods used for
the connection setup and data transfer of HTTP requests. Therefore, it is important to
examine the operation of each of the protocols in order to gain perspective on why and
how the timing of each can be differentiated. We begin with a discussion of the protocols
and systems we consider in this research. After that we will explore the previous work in
this realm that has led to this research. We then explore other attempts to solve similar
problems as well as similar methods used to solve other problems.

2.1 Fundamental Knowledge
This chapter begins with a brief description of TCP, HTTP, and reverse proxies.

2.1.1 TCP and HTTP
Two transport protocols are provided by the Internet, User Datagram Protocol (UDP) and
TCP. The latter is what web clients use to access web page content via HTTP and is
standardized in Request For Comments (RFC) 793 [7]. It is a connection- oriented protocol,
meaning a client and server must exchange Layer 4 information in order to establish a
connection prior to passing higher layer messages such as Hypertext Markup Language
(HTML). This connection establishment, or handshake process, is comprised of three steps,
aptly named the 3WHS, and shown in Figure 2.1. It is what enables the sockets used by two
processes to pass data reliably over computer networks. A TCP connection is considered
established after the 3WHS has been completed.

A client sends a TCP segment to a server in the first step of the 3WHS. To ensure a common
definition, we use “segment” to refer to the Protocol Data Unit (PDU) at the Transport
Layer. The segment is void of Application Layer data and its header has the SYN bit set
to 1. This is to let the server know that it is a SYN segment that begins a TCP connection.
The SYN segment also contains the initial sequence number from the client.

The second step of the 3WHS occurs when the server receives the SYN segment. It al-

7

Client Server

SYN=1, Seq: Client_ISN

SYN=1, Seq: Server_ISN, Ack: Client_ISN+1

SYN=0, Seq: Client_ISN+1, Ack: Server_ISN+1
tim

e

tim
e

Connection
Requested

Connection
Established

Figure 2.1: TCP 3WHS timing diagram

locates the TCP buffers necessary to handle the connection, records the client’s initial se-
quence number, and assigns its own sequence number. The server then sends a segment
back to the client with the client’s initial sequence number incremented by one as well as
its own initial sequence number. Like the SYN segment, this contains no Application Layer
data. It is called the SYNACK segment because it acknowledges the previously received
segment by returning the initial sequence number plus one and sets the SYN bit in the
header to 1.

Once the client receives the SYNACK segment, it allocates its own TCP buffers and records
the server’s initial sequence number. It sends a final segment as the third and final step of the
3WHS containing the server’s initial sequence number incremented by one to acknowledge
the SYNACK segment and sets the SYN bit to 0. This final segment is referred to as the
ACK and may or may not contain client-to-server data in the payload [8].

The HTTP is described in RFC 7230 as “a stateless application-level protocol for dis-
tributed, collaborative, hypertext information systems” [9] however, Internet users most
commonly know this as what brings web page content to their computer monitors. Like
TCP, information is passed between the server and client to complete HTTP requests but
the PDU at this level is not referred to as a segment; rather, it is called a message.

8

Client Server

HTML/1.1 GET

ACK Packet

tim
e

tim
e

HTML/1.1 200 OK

Figure 2.2: HTTP timing diagram

Messages are either requests from clients or responses from servers to the clients. One
of the most common types of HTTP client requests is the GET message. This particular
request is used to retrieve a representation, or copy, of a resource that resides on a server.
Figure 2.2 illustrates that the server acknowledges the GET request first and then follows
up with one or more messages in response that contains either a success or error code along
with the requested data. The data delivered to the client is called an object and web pages
usually contain multiple objects. A web page typically contains text in its base file as well
as images and other content such as links and advertisements. Each of these are separate
objects and can be delivered by the origin server although, most likely are delivered by other
servers that the client has been redirected to via separate TCP connections. For example,
the news agency, CNN [10], involves over 170 separate TCP connections just to display its
home page.

This simple description of HTTP is the most basic form of request and response and il-
lustrates the fundamental concept of web browsing. Other factors such as caching and
intermediaries add complexity and allow for the scalability of HTTP across the Internet,
which is one of the primary reasons reverse proxy servers are in use.

9

2.1.2 Reverse Proxy Servers
As briefly described in Chapter 1, reverse proxy servers take requests from remote clients
and gather the data to be returned by maintaining two connections; one to the requesting
client as well as another to the back-end server or servers. This enables organizations to
remain compliant with regulations such as the Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) [11] by allowing them to provide content from internal net-
work services to Internet clients without actually storing any of the data in their publicly
accessible areas like the Demilitarized Zone (DMZ).

Proxy web servers provide improved performance benefits in the form of workload dis-
tribution since one or more servers can handle higher volume “typical’’ web requests
thereby reducing the load on the origin web server. National Institute of Standards and
Technology (NIST) Special Publication 800-41 further explains that many proxy servers
have caching enabled in order to speed up web content delivery to clients [12]. The publi-
cation also gives evidence of access control applicability for proxy servers in that they can
be used for limited firewalling capabilities. A reverse proxy can be used for authentication
of clients and even perform “analysis and validation of common application protocols such
as HTTP.”

2.2 Previous Work
Our efforts are based largely on previous work done by a former student at the NPS [3].
His research demonstrated a novel method for inferring the presence of reverse proxies
by conducting timing analyses from a remote client computer. The basic concept was
that a client could determine whether or not a resource provider was positioned behind a
reverse proxy by comparing the RTT of the TCP 3WHS to the actual content delivery of
the requested web page.

He gathered timing measurements from web requests made to nearly 300 live websites
found on Alexa’s top one million websites [13] as well as several more to a list of known
malicious sites. This gave him a large set of active websites from which he requested con-
tent to measure RTTs. He also added to his resource set by identifying a list of ten alleged
reverse proxy servers found by searching Torrent proxy servers in Europe. Despite the large
pool of target servers, he only had true knowledge of a single reverse proxy that he had in-

10

stalled in Monterey, California and a single website that was provided by a large internet
domain registrar and web hosting business in New Jersey. As is the case with most at-
tempts at inferring Internet topology, his research could not be validated with ground-level
truth. He did not have first-hand knowledge about the actual topology of his experimen-
tal network devices despite the large resource pool and therefore, the results were largely
speculative.

Our primary goal in this research was to expand upon his methodology and apply it to a
topology of known clients, servers, and reverse proxies so that we could identify an accurate
classifier that would best detect the presence of a reverse proxy server.

2.2.1 Attempts to solve similar problems
As mentioned in Chapter 1, identification and validation of the source of information is a
challenge that applies to many aspects of daily transactions. The main difference with com-
puter systems is that the interrogation process must happen nearly instantaneously however,
the fundamental concepts remain the same.

Redirection Botnet Seeker (RB-Seeker) was presented at the Network and Distributed Sys-
tem Security (NDSS) Symposium in 2009 as a system aimed toward detecting Redirection
Botnets (RBnets). RBnets are sets of infected computers used as an infrastructure to redi-
rect and proxy traffic at the direction of a master computer known as a botmaster. The
authors chose to focus their study toward redirection services instead of proxy services be-
cause “redirection offers several financial and performance advantages over proxy in terms
of content availability, resource utilization, and ease of management” [14]. They supported
their argument by explaining that most botents are comprised of commodity home comput-
ers and are therefore less capable of reliably maintaining two connections without being
detected. Additonally, they are less likely to be available for continuous periods making
them more difficult to manage remotely.

Despite the researchers’ aversion to botnets serving as proxies, their methodology could
still potentially be adapted toward reverse-proxy detection without timing measurements.
Their design involved the use of three subsystems that worked together to detect inconsis-
tencies. One subsystem populated a database of redirections found through links in spam
emails and the second populated the same database with network traces using sequential

11

hypothesis testing. The database was later given to the third subsystem which conducted
DNS queries and compared them to the data from the other two and made decisions based
on hyperplane decision functions.

While their system proved to be very effective in identifying RBnets, it did not incorporate
the round trip time measurements that we used. It could be useful to populate a database
with timing measurements from different vantage points and then compare them for de-
cision making however, the intent was to create a system that can detect the presence of
reverse proxies from only the client’s vantage point.

Packet timing measurements were used successfully for the identification of firewalls in a
limited-scale research effort conducted by Michigan State University and AT&T Labs [15].
The group measured the processing time of probe packets that they sent through a firewall
in order to identify unique packet handling methods that they could then attribute to spe-
cific devices. Their research was based on the assumption that a host computer inside the
protected network had been compromised and a scanning tool such as nmap [16] had been
conspicuously installed and activated. While timing was used to fingerprint firewalls, it
required vantage points on both sides of the firewall to identify the packet classification
algorithms being used and therefore is not able to be adapted for our research.

Another effort to use time as a metric for identification was by a group of researchers
at the University of California, San Diego. The team advanced the concept of remote
operating system fingerprinting to that of identifying remote physical devices using very
small deviations in clock skew [17]. The authors demonstrated that they could determine
whether two devices on the Internet were actually the same regardless of whether they were
separated by time, distance, or access technology. This was an advancement in the use of
timing measurement because they sought to exploit the deviations in clocks rather than to
minimize or eliminate them.

The techniques described in their paper leveraged standardized protocol fields [18] specifi-
cally, those in the TCP Timestamps Option and Internet Control Message Protocol (ICMP)
Timestamp Requests. In doing so the authors discovered that clock skews are measurable
and provide information to fingerprinters (adversaries) regardless of their physical location
in the world. They demonstrated that clock skew estimation is independent of topology or

12

access technology in nearly all instances. Furthermore, while these clock skews were con-
stant over time for all tested devices, there was a detectable difference between disparate
devices. Their data showed that they could detect at least 6 bits of entropy between unlike
devices and that it was enough to determine that they are in fact different. This was a valu-
able contribution because it showed that only 6 bits can be enough of a partial fingerprint
to accurately identify a physical device.

Our research does not apply the same techniques as the preceding research contributions
however, they provide motivation that time is a viable method for inferring the presence of
devices remotely.

2.2.2 Attempts to use similar solution methods to solve other problems
Our research will rely heavily on the use of PlanetLab in order to collect accurate, relevant
timing measurements through the Internet. PlanetLab is an overlay network of over 1,100
machines, or nodes, dispersed internationally at 584 academic, industry, and government
sites [19]. It was introduced in 2003 as a research testbed that is fully connected through
the Internet thus enabling users to conduct experiments under real-world conditions [20].
There has been significant network-related research conducted using this valuable resource
as it provides a relatively low risk experimentation environment through the use of virtual
machines from which to test new and innovative programs and methodologies.

In 2008 Colin Dixon, Thomas Anderson, and Arvind Krishnamurthy presented their De-
nial of Service (DoS) prevention system, Phalanx, and claimed it could counter the effects
of botnets with the comparable aggregate power of swarms. The concept was that pack-
ets would travel from a sending client, through a random order of participating end-host
mailboxes, and eventually be either retrieved or ignored by their intended destination. The
random ordering of mailboxes that packets traversed would allegedly foil DoS attacks by
even the largest botnets because there would be no known routes or nodes for them to
target. They demonstrated that their system could in fact withstand a multimillion-node
botnet and reasonably be deployed by a single large Internet Service Provider (ISP) by
using PlanetLab.

They first assigned two PlanetLab nodes as end clients (one in Berlin, Germany and the
other in North Carolina) and ten mailbox nodes between them in order to compare latency

13

measurements of normal UDP traffic and Phalanx protected traffic. They then simulated
an attack on half of the mailbox nodes by intentionally dropping 75% of the packets at
the nodes under attack. Their next phase focused on the scalability of their system so
they needed a means to test it in a large-scale environment. Since PlanetLab is not nearly
large enough to replicate Internet-scale testing by itself, the researchers modified the nodes’
roles. They created a simulator based on a probe of 7,200 actual nodes known to be part
of a major Content Distribution Network (CDN). The simulator then modeled the nodes
to be participating Phalanx mailboxes and then re-assigned the original PlanetLab nodes to
simulate web servers under attack. The final phase of their methodology was to test their
system at a multi-million bot level. The researchers again used the simulated mailboxes but
increased the access link bandwidth to reflect that of a swarm at a similar scale [21]. The
significance of this research effort beyond the successful demonstration of Phalanx, was
the effective use of PlanetLab to showcase the prototype as well as enhance an Internet-
scale simulation. The network provided the means to simulate a DoS attack without having
to deploy a botnet in the wild and allowed for the simulation of actual infrastructure all
without interfering with real Internet traffic.

Mapping all or parts of the Internet is another challenge many researchers and private com-
panies work hard to solve. Approaches known to gain knowledge about network topologies,
operating systems, and specific middle-box devices have proven successful. There have
even been some methods developed to identify the presence of, and even fingerprint reverse
proxy servers via remote means. One such method involved using Extensible Markup Lan-
guage (XML) for fingerprinting [22] but the primary method our research will employ is
timing analysis.

14

CHAPTER 3:
METHODOLOGY

The conceptual foundation of this thesis was derived from the findings of the previous re-
search [3]. The first step of the methodology was to repeat the experiment on a known set of
machines. To accomplish this first step we established several PlanetLab nodes worldwide
and conducted our experiment on a widely dispersed set of clients, web servers, and reverse
proxies. Our methodology was designed to capture and measure the RTTs of TCP packets
from the client machine’s perspective. From these captures, we calculated the ratio of two
particular RTTs and used it as the identifying attribute of the known configuration. The
attribute ratio and the ground truth of the configuration were then used to find a classifier
that could determine the presence of a reverse proxy in a separate captured flow.

3.1 Data Collection
We began our study by instantiating a slice of PlanetLab nodes representative of the glob-
ally distributed nature of the Internet. We used thirty nodes as shown in Figure 3.1; five in
Asia, three in Australia/New Zealand, nine in Europe, eleven in North America, and two
in South America. Some nodes were located in close proximity to each other for example,
two nodes in Boston, Massachusetts, while others were separated by great distances like the
nodes in Norway and New Zealand. Our test methodology also included instances where
the proxy and web server resided on the same machine to represent the smallest possible
distance between two points. There were other nodes available that would have provided
for even greater geographic separation however, many that participate in the PlanetLab
consortium were not reliable during our testing period so were not included in this set.

The high-level concept of our measurement configurations is shown in Figure 3.2. A client
on a node made one of three types of web requests; directly from the web server, via a
remote reverse proxy server, or via a reverse proxy server on the same machine as the web
server.

Each node served as the client, the reverse proxy, and the web server depending on the
permutation being executed so that every iteration was conducted under the same distance

15

City	 Lat	 Long	 City	 Lat	 Long	 City	 Lat	 Long	
	 Nagoya,	 Japan	 35.1566	 136.925	 	 Moscow,	 Russia	 55.75	 37.6	 	 Cleveland,	 OH	 41.5022	 -‐81.6079	
	 Chongqing,	 China	 29.5372	 106.602	 	 Lisboa,	 Portugal	 38.45	 -‐9.09	 	 Lincoln,	 NE	 40.8	 -‐96.6667	
	 Beijing,	 China	 39.9606	 116.359	 	 Nicosia,	 Cyprus	 35.15	 33.36	 	 Los	 Angeles,	 CA	 33.9815	 -‐118.46	
	 Singapore,	 Singapore	 1.37	 103.8	 	 London,	 England	 51.498	 -‐0.176655	 	 	 	 Boston,	 MA	 42.37	 -‐71.03	
	 Hiroshima,	 Japan	 34.4403	 132.415	 	 Budapest,	 Hungary	 47.4725	 19.06	 	 Cambridge,	 MA	 42.363	 -‐71.0926	
	 Hamilton,	 New	 Zealand	 -‐41.2902	 174.768	 	 Ioannana,	 Greece	 39.6182	 20.8386	 	 Waterloo,	 Canada	 43.4726	 -‐80.5422	
	 Auckland,	 New	 Zealand	 -‐37.7892	 175.318	 	 Tromso,	 Norway	 69.6813	 18.977	 	 St.	 Louis,	 MO	 38.6479	 -‐90.3015	
	 Melbourne,	 Australia	 -‐37.9096	 145.133	 	 StuXgart,	 Germany	 48.7835	 9.17517	 	 Boulder,	 CO	 40.0072	 -‐105.262	
	 Guayaquil,	 Ecuador	 -‐2.15	 -‐79.96	 	 Koszalin,	 Poland	 54.2047	 16.1972	 	 SeaXle,	 Washington	 47.6531	 -‐122.313	
	 Buenos	 Aires,	 Argen[na	 -‐34.5975	 -‐58.3985	 	 Arlington,	 TX	 32.73	 -‐97.115	

	 Eugene,	 OR	 44.04	 -‐123.06	

Figure 3.1: Map of PlanetLab nodes used. Each of the green pins on the map [23] corresponds
to the location of one or more PlanetLab nodes. The table below the map lists the city and
coordinates of each of the nodes

and hardware conditions. This maximized the utility of the PlanetLab nodes to make most
efficient use of the data collection period and placed similar loads on each machine. The
intent was to increase the web traffic to our machines thus, more closely replicating what
is assumed to be the load on a highly-visited production web server. Our set of thirty nodes
also provided the opportunity to gather a large data set for analysis.

We tested every permutation of realistic web service configurations. We define realistic
configurations by first describing unrealistic ones. It would be unrealistic for a web client,
for example, to request a web page from a web server that happens to also be on the same
machine as itself. If this were the case, it would be trivial to determine whether or not
the web server was behind a reverse proxy because the operator has access to the entire

16

Web Server

(a) Direct connections

Web Server Proxy

(b) Remote reverse proxy

Proxy + Web Server

(c) Local reverse proxy

Figure 3.2: The three different instances of timing measurement configurations

machine. The realistic configurations we examined are described in more detail in the
following paragraphs.

We began our measurements with a single iteration of direct connections between the
clients and web servers. Every node requested the web page from every other server 250
times as shown in the pseudo-code presented in Algorithm 1. All 30 nodes opened a text
file that contained the IP addresses of the other 29 nodes and requested the web page from
the server that was active on each respective node. The scale of the directly connected
permutations can be represented by (n(n−1))×250 where n = number of nodes in slice.

17

This comes to 217,500 direct connection flows to analyze.

Algorithm 1: Method to directly request the web page from every web server

for IP in list of PlanetLab nodes do
start tcpdump;
wait 2 seconds; /* to allow tcpdump to start capturing */

for i = 1; i <= 250; i++ do
wget IP; /* save results to local pcap file */

traceroute every 25th IP; /* save results to local txt file */

end
killall tcpdump

end

The scale of measurements increased significantly when the reverse proxies were intro-
duced. For each iteration, only one node served as the web server, s. Each client c requested
the web page via every reverse proxy p except when c and p were the same machine be-
cause it is not realistic for a client to use itself as a reverse proxy. Likewise, c was never
equal to s for the same reason. It is acceptable however, that p and s could be the same
node so we incorporated that configuration into our methodology. Pseudo code is presented
in Algorithm 2 to help clarify the method used to test every permutation of our PlanetLab
set. Figure 3.3 shows a visual representation and description of the necessary connections
for a single iteration with only three nodes. Using the formula n((n− 1)(n− 1)) we cal-
culated the number of iterations needed to measure every permutation of our slice which
was 25,230. Again, every request was made 250 times resulting in 6,307,500 reverse proxy

18

flows to collect.

Algorithm 2: Method to request the web page from every reverse proxy

for Server IP in list of PlanetLab nodes do
for Proxy IP in list of PlanetLab nodes do

Destination IP = Server IP; /* Point proxies to web server */

/* All nodes execute from here except the target web server */

for IP in list of PlanetLab nodes do
start tcpdump;
wait 2 seconds; /* to allow tcpdump to start capturing */

for i = 1; i <= 250; i++ do
wget IP; /* save results to local pcap file */

traceroute every 25th IP; /* save results to local txt file */

end
killall tcpdump

end
end

end

In addition to controlling the traffic conditions, we used what we assumed to be similar
hardware as well as installed identical software on each node to minimize variables that
could impact our timing measurements.

The actual hardware configurations of the PlanetLab nodes could not be absolutely deter-
mined however, they all ran virtual instances of the Fedora Operating System. The majority
of the nodes in Europe used Version 14 (Laughlin) while the rest of the nodes used Ver-
sion 8 (Werewolf). Every node in our set used the Cubic implementation of TCP with
TCP Segmentation Offload (TSO) enabled and set to the default setting of 3. TSO is a
method of offloading work from the Central Processing Unit (CPU) to the Network In-
terface Card (NIC) thereby increasing the throughput for outgoing data. When TSO is
enabled, large chunks of data are sent to the NIC which then forms the TCP segments.
When disabled, this work is done entirely by the CPU. The TSO setting determines how
much of the TCP congestion window can be filled by one of these chunks. The settings

19

Client Client Client

Proxy Proxy Proxy

Server Off Server Off Target Server

Node A Node B Node C

Figure 3.3: Single iteration with three nodes (n = 3) showing number of web requests is (n−
1)(n−1) when Node C is the target web server. Node A requests HTTP content from Node C
via the proxies at Nodes B and C. Node B requests HTTP content from Node C via the proxies
at Nodes A and C. Node C does not participate in this iteration as it is not normal for clients to
request web content from itself. For all possible permutations in this diagram there would need
to be n((n−1)(n−1)) or 12 total iterations to allow for each node to be the target server.

range from 2 to 16 with the lower numbers resulting in larger chunks and less work for the
CPU [24].

We installed the same software on all nodes to minimize the variables that could impact
our timing measurements. Apache Hypertext Transfer Protocol Server (httpd version 2.2)
was installed as the web server. The web page was designed to be 1KB in size so that
it would be delivered in a single data packet. Normally, web pages are larger than what
can be sent in a single IP packet and must be sent over several packets. We were only
interested in the RTT of the first data packet so the additional data was inconsequential to
our measurements. Additionally, the standard port number for HTTP traffic, port 80, was
not available for our use on the PlanetLab nodes because the resources had to be shared
among all users. To account for this we assigned a non-standard port for the Apache web
server to listen on.

We installed NGINX (0.6.33) [25] as the reverse proxy on each node even though there
were other tools available such as Squid [26] and Apache [27] that are widely used and
handle server-side connections differently. The fundamental property of requiring more
time to retrieve and deliver content than to connect to the client holds true despite the
software used [3] however, so we did not collect data using these other applications. Again,

20

we used a non-standard port number to listen on since we could not use port 80.

Finally, the standard tools tcpdump [28] and wget [29] that are included in the Fedora
distributions of PlanetLab were used as the client tools to request web pages and record
packet data. We filtered our tcpdump to capture only packets destined for or coming from
our set of nodes and their non-standard port numbers to reduce the size of the packet capture
files down to only what was pertinent to the investigation.

We used the previous research methods and tools [3] to accurately measure the RTTs of the
TCP 3WHS and HTTP request. The timing measurements were taken based on two RTTs
as shown in Figure 3.4. The first RTT was the elapsed time from when the SYN packet was
sent by the requesting client until the corresponding SYN/ACK packet was received. This
time was annotated as t1. The second RTT, t2, was calculated from when the HTML GET
request was sent to when the first data packet, the HTML 200 OK message, was received.

A script was used to automate the initiation and recording of the timing measurements. The
packet analyzer, tcpdump, was started first to begin capturing packets. The script paused
for two seconds to allow the analyzer to initialize and then we used wget to retrieve the web
page 250 times in succession.

We configured wget to disable server-side caching so that every request would reach all the
way to the web server and prevent inaccurate measurements due to attempted performance
enhancements at the reverse proxy. The feature was disabled by using the “–no-cache”
HTTP option in the wget command which sends the remote server instructions to get the
content from the remote server and not return a cached version. The wget documentation
explains that it “is especially useful for retrieving and flushing out-of-date documents on
proxy servers.” All nodes in the set executed the script in parallel and saved the packet
captures to local pcap files as well as the traceroute data to local text files.

The order of web servers that content was requested from was different on each client so
that the overall traffic was evenly distributed. This prevented all requests going to a single
web server simultaneously and helped alleviate potential weather effects or time-of-day
phenomena that is known to impact traffic patterns [30] [31].

Once each iteration was complete, we used another script to retrieve the packet capture files

21

t1 ≈ t2 ≈ t3

ti
m

e

ti
m

e

t1

t2

.

.

.

Client Server

(a) Direct connection t1 ≈ t2 ≈ t3

ti
m

e

ti
m

e

t1

t2

ti
m

e

Client Reverse Proxy Server

.

.

.

.

.

.

(b) Via reverse proxy

Figure 3.4: Side by side comparison of web request by direct connection and via reverse proxy
from [3]

from each node and saved them to a central machine for later analysis. We then deleted the
files from each node in preparation for subsequent iterations.

3.2 Data Analysis
After all the data had been captured, we divided it into two sets: a training set and a test set.
The training set was used to evaluate and determine the best classifier that would detect the
presence of a reverse proxy server. We did not initially subdivide the proxy data to isolate
the proxy servers that were co-located with the web servers and those that were not. Our
objective was to determine the best classifier that would decide if there was a reverse proxy
and not how far away it was. Later however, we did find it useful to separate the two proxy
cases and explored the results further.

The classifier was then applied to the test set to determine its accuracy on the set. Again,
our classifier was based on the ratio t2 to t1. We anticipated that a ratio approximately equal
to 1 reflected a directly connected client and web server while anything greater meant that

22

there was a reverse proxy in the path. The goal, then, was to find the most precise ratio that
would give the best accuracy in predicting whether our traffic was coming from a proxy.

The training set was comprised of a randomly selected 80% of the total data captured. We
used the tools created in prior research [3] to parse the packet capture files and extract the
pertinent information. We made minor modifications to account for the non-standard ports
that were recorded. We also added features to pre-calculate the ratios and record the actual
configuration of each flow. A configuration setting of 0 meant that the client was receiving
the content directly from the web server while a setting of 1 meant that it was not.

Once the training set of data was compiled we used the open source machine learning and
data mining software suite, Orange (2.7.8.dev) [32], to find the ratio that best determined
web server configuration. Since the GET/3WHS ratios were already calculated we only
needed to pass them and the binary configuration values to Orange. Orange then used
decision tree learning to produce a classification tree based on the configuration as the class
and the ratio as the attribute of the class. We took the ratio at the trunk of the classification
tree and used it as our classifier.

The classifier was then used on each flow in the test set to decide whether or not it was
a web server behind a reverse proxy. The decisions were recorded in a confusion matrix
(Table 3.1) from which the performance of the classifier was evaluated. Each decision was
recorded as di j where i is the actual configuration and j is the predicted configuration. For
example, an entry of d01 means that the classifier predicted the web server was behind a
reverse proxy (con f iguration = 1) when in actuality is was not (con f iguration = 0).

Finally, the overall performance of the classifier was calculated in terms of its accuracy,
precision, negative predictive value, recall, specificity, and F1 score. These measures are
discussed in Chapter 4.

Table 3.1: Confusion matrix template
Prediction

R.Proxy = 1 Direct = 0

Tr
ut

h R.Proxy = 1 d11 d10
Direct = 0 d01 d00

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

CHAPTER 4:
RESULTS AND ANALYSIS

The execution of the test methodology required 50 days to complete from December 1,
2014 to January 19, 2015. Challenges in PlanetLab availability were the primary factor in
the lengthy data collection period however, like actual systems in the Internet, it only added
to the realism of actual Internet performance. We were successful in collecting a large data
set and were able to find an accurate classifier ratio to determine the presence of a reverse
proxy.

4.1 Data Set Acquired
The data collection plan was designed to capture 6,525,000 flows in the best-case scenario.
This upper bound would be feasible if there were no incomplete 3WHSs, HTTP requests,
or hardware failures. The performance of PlanetLab was such that we ultimately captured
6,225,044 total flows, or 95% of the best potential outcome (Table 4.1). The low rate of
capture in direct flows was a result of node restarts or failures during the measurement
period. The measurement period for the configuration without proxy servers was much
longer in duration since all 30 nodes were executing 250 web requests to the other 29
nodes in parallel.

The average duration of the non-proxy configuration measurement period was seven hours
and on none of our three attempts did all 30 nodes stay online the entire time. By compar-
ison, the duration of each of the proxy configuration measurement iterations was three to
four hours. The difference in time is due to two factors. First, the direct connection config-
uration sent over 7,000 more web requests than a single proxy iteration due to the realistic
configuration rule explained in Chapter 3. Where only one scenario was ruled out in the
direct configuration, a client requesting content from itself, two scenarios were ruled out
in the proxy configuration. A client would not request content from itself as a web server
and likewise, it would not request content through itself as a reverse proxy. The exclusion
of the additional node leads to the second reason for the difference in collection periods.
The direct configuration required that all web servers be operational during the collection
period while in the proxy configuration, only the target web server needed to remain oper-

25

ational. While it is true that all the nodes were operating as reverse proxies and needed to
remain online, we found that the longer the collection period lasted, the more likely a node
would restart or fail.

We examined several files to find the cause of the unsuccessful captures and found that they
were indeed due to incomplete flows resulting from timeout thresholds being exceeded and
nodes going offline. We also found that the majority of the unsuccessful flows were at-
tributed to five specific PlanetLab nodes (Boulder, CO; Los Angeles, CA; Lisbon, Portugal;
Seattle, WA; and Chongqing, China).

The unsuccessful flows were a reflection of some of the challenges we experienced in data
collection. One of the first difficulties encountered was in establishing the most reliable set
of nodes from our slice of nodes to use for experimentation. We found that it was not the
case that the nodes adhered to any standard base operating system version or permission
sets. There were many nodes that would not allow any programs to bind to non-standard
ports which prevented our web servers and reverse proxies from operation. Others would
connect to various Fedora [33] repositories and install programs of different builds for
the varying PlanetLab kernels. This did not prevent the installation or operation of the
web servers or reverse proxies but did require us to prepare separate configuration files
depending on the kernel version and therefore, slowed down the parallel modification to
those configuration files.

Another challenge was that PlanetLab nodes regularly restarted unexpectedly, presumably
for maintenance. One node in particular, at the University of Texas, Arlington, would
routinely restart every night. Hardware failure events also occurred on more than one
occasion. Most times the faults were resolved within a few days; however, one node was
inoperable for nearly two weeks and required significant effort just to find a point of contact
for the node.

Table 4.1: Summary of flows captured
Type of Flow Number Expected Number Captured Percent Captured
No Proxy 217,500 193,859 89%
With Reverse Proxy 6,307,500 6,031,185 96%

26

One unanticipated challenge resulted from our efforts to parallelize the test execution. All
nodes in the set were simultaneously requesting web pages as well as serving as reverse
proxies during the measurement iterations. Each node that was requesting web pages in a
client role was capturing the packets and saving them in pcap files. On multiple occasions,
two nodes would request and serve web pages from and to each other at the same time
which would cause the flow to be recorded from both vantage points. We discovered mul-
tiple instances of impossible RTT ratios during the analysis phase of the experiment which
led to further investigation. Our method to parse flows from the captured pcap files relied
on port numbers to determine the start and subsequent states of each flow. This resulted in
several flows being extracted from the pcap files and recorded as flows from the wrong per-
spective. The outcome was that the HTTP content request and delivery RTTs were several
orders of magnitude shorter than the 3WHS RTTs. These extraneous “backward” flows
were easily identified and removed prior to being included in the training and testing sets.

We plotted ratios for each of the three configuration types once the erroneous and incom-
plete flows were removed from the data set. The ratios were all approximately equal to
1 in the instances when a client was directly accessing the web server (Figure 4.1). This
indicated that the overwhelming majority of the 3WHS RTTs and HTTP RTTs were nearly
identical since both processes involved only the requesting client and web server, as well as
the intermediate topology of Internet devices. The results also confirmed that there was a
noticeable difference in ratios when a client requested a web page from a web server behind
a reverse proxy and one that was not. This demonstrated that the additional time required
for the back- end processing was indeed detectable from a client machine’s perspective.

The ratios were higher in the two non-direct configurations because the reverse proxy had
to connect to the web server, retrieve the web content, and then deliver it to the requesting
client. The instances when the reverse proxy was on the same machine as the web server
resulted in a smaller variation in ratios than those when the reverse proxy was remotely lo-
cated. An interesting observation is that the ratios for reverse proxies on the same machine
as the web server providing the content resembled the results of those that were remotely
connected. One could assume that since distance was not a factor that the ratios would
more closely resemble the ratios of clients requesting content directly from the web server.
We will explore these results further at the end of this chapter.

27

Figure 4.1: Comparison of GET/3WHS ratios. These CDFs illustrate the difference in ratios
from clients retrieving content directly from the web server or via a reverse proxy that is either
directly or remotely connected to the web server.

The CDFs reinforced the hypothesis that timing analysis alone can detect the presence of a
reverse proxy and supported further exploration to find the most accurate classifier.

The data sets were divided into training and testing sets for use in machine learning and
testing. The training set was comprised of a randomly selected 80% of the proxy flows
concatenated with a randomly selected 80% of the direct flows in a single table. Figure 4.2
illustrates the division of the data sets. Likewise, the testing set consisted of the remaining
20% of the proxy flows concatenated with the remaining 20% of the direct flows in a
single table. Table 4.2 contains sample data from one of the data sets built following the
combination of proxy and non-proxy flows. This method was adjusted later to enable cross-
validation as described in Section 4.4. The first column of the table identifies the client port
number which is how we uniquely identified each flow. The next two columns display the
client (source) IP address and the IP address of either the web server in the case of a direct
connection, or the reverse proxy in a proxied connection. Columns 4 and 6 are the actual

28

RTTs of either the 3WHS or the GET. The column in between lists the number of flows
captured based on the client port number. This was useful in identifying flow instances
where a port number collision had occurred. In the very few cases that this happened, we
only considered the first captured flow to prevent any ambiguity in flow timing. The seventh
column lists the calculated ratio for each flow and the last column represents the ground
truth value of the actual configuration. A value of 0 means that the client directly accessed
the web server while a value of 1 means that the connection went through a reverse proxy.

Table 4.2: Sample of data in table of captured flows
Client Port Src_IP Dst_IP 3WHS Flows GET Ratio Truth

43520 128.138.207.54 128.208.4.199 0.042830 1 0.043359 1.012351 0
55264 128.208.4.199 194.42.17.121 0.215998 1 0.216253 1.001181 0
39261 128.223.8.114 195.130.121.205 0.242246 1 0.243015 1.003174 0
44023 62.108.171.76 211.68.70.40 0.202333 1 0.910982 4.502390 1
56002 211.68.70.40 194.42.17.121 0.232182 1 0.650417 2.801323 1

4.2 Initial Training Set Results
As mentioned earlier, we used Orange as the machine learning tool to calculate the best
classifier ratio. The program built a classification tree using the actual configuration, proxy
or direct, as the class and used the ratio of each flow as the attribute associated to the class.
Once Orange completed the decision tree it returned a threshold of 1.044. This indicated
that the time required for the client to receive the first data packet of a requested web page
from a target server was nearly identical to the time required for the initial TCP 3WHS.

Unordered set of all proxy flows Unordered set of all direct flows

80% 80% 20% 20%

Training Testing Training Testing

Training Training Testing Testing

Figure 4.2: Initial division of the data into training and testing sets. The full data set of flows was
divided into training and testing subsets consisting of 80% and 20% of the flows, respectively.
A classification tree was built using the combined training subset and the resulting classifier was
evaluated using the combined testing subset.

29

4.3 Performance of Initial Classifier on Test Set
After we identified the potential classifier, we evaluated it using the remaining 20% of data
that was set aside as the test set. We wrote a short Python [34] program to predict the
presence of a reverse proxy based upon the ratio. If it was greater than the classifier, it was
predicted to be a reverse proxy connection. If it was less than or equal to the classifier, it
was predicted to be a direct connection. We then compared the predicted class to the actual
class and annotated whether it had correctly identified it or not in a confusion matrix.

For testing purposes we needed to define the type of correctness or incorrectness that the
classifier had predicted. The completed confusion matrix is shown in Table 4.3 and reflects
the results of our testing.

Table 4.3: Confusion matrix of classifier on test set
Prediction

R.Proxy Direct

Tr
ut

h R.Proxy 1,198,633 6,896
Direct 1,503 37,150

We then used the data in the confusion matrix to calculate the quality of the classifier
in determining the presence of a reverse proxy server. For this, we considered accuracy,
precision, and recall.

The accuracy reflects whether the test actually measured what it was supposed to. It gives
a general understanding of the performance of our classifier and was calculated as:

Accuracy =
Number_o f _correct_predictions
Total_number_o f _predictions

=
1,198,633+37,150

1,244,182

=
1,235,783
1,244,182

= .99

(4.1)

Although this quick calculation shows a very high accuracy, it does not expose which pre-
dictions were most successful between the direct and proxy connections. It was necessary,
then, to examine the results more closely.

30

Precision, or Positive Predictive Value (PPV), is the probability that a reverse proxy was
present when the classifier predicted that there was one. In other words, given a prediction
of “proxy” from the classifier, how likely was it to be correct? The Negative Predictive
Value (NPV) is the inverse of precision. It reflects the probability that direct connections
were truly direct connections when the classifier determined that no reverse proxy was in
the path.

Precision =
T P

T P+FP

Precision =
1,198,633

1,198,633+1,503
= .99

NPV =
T N

T N +FN

NPV =
37,150

37,150+6,896
= .84

(4.2)

The results show that when the model predicted that the configuration was with a reverse
proxy that it was correct 99% of the time while it was only correct 84% of the time with
direct connection.

Recall, also known as sensitivity, is the measure of the ability for a prediction model to
select instances of a certain configuration from a data set and corresponds to the True
Positive (TP) rate. In the context of this research, a positive prediction is one that predicts
a reverse proxy connection. When the recall is high, there is a greater probability that the
test detects a reverse proxy when it is indeed present in the path. The inverse of recall
is specificity, which corresponds to the True Negative (TN) rate or the probability that the
path is predicted to be without a proxy when the proxy is absent. The question we sought to
answer here was, given a configuration, what was the likelihood the classifier would detect
it?

Recall =
T P

T P+FN

Recall =
1,198,633

1,198,633+6,896
= .99

Speci f icity =
T N

T N +FP

Speci f icity =
37,150

37,150+1,503
= .96

(4.3)

Here, we see that when our model was presented with a RTT ratio it was able to detect

31

reverse proxies 99% of the time and direct connections 96% of the time.

Finally, we considered the F1-Score or, the overall measure of the classifier’s performance
when predicting the presence of a reverse proxy server.

F1 = 2× Precision×Recall
Precision+Recall

F1 = 2× .99× .99
.99+ .99

= 2× .98
1.98

= 2× .49 = .99
(4.4)

The results show that a classifier of 1.044 seemed accurate when predicting that there was a
reverse proxy in the path between a client and web server. The low NPV however, indicated
that it may not be reliable in confirming the lack of one and therefore, made our classifier
less trustworthy.

We then considered the possibility that the initial split of the data set into training and
testing subsets was less than optimal for generating and evaluating a classifier. To address
this we conducted a 5-fold cross validation on the entire set of flows using a classification
tree for each fold in Orange. The same classifier of 1.044 was determined by the learning
algorithm and the results were nearly identical to the analysis that we conducted previously
as shown in Table 4.4.

Table 4.4: Comparison of evaluation of classifier on initial 80/20 split and after 5-fold cross
validation with classification tree learning

Initial 80/20 5-Fold
Accuracy .99 .99
Precision .99 1.0

NPV .84 .84
Recall .99 .99

Specificity .96 .97
F1 .99 1.0

The results support the indication that the classifier was not as reliable in determining direct
connections as it was in finding reverse proxy connections.

32

4.4 Adjusting the Methodology
The analysis of the initial test set performance revealed a shortcoming in the overall ability
of the classifier to detect a directly connected server. A cursory study of the data implied
sample bias in that there were 30 times more proxy samples collected than the non-proxy
samples. To address this, we divided up the proxy sample training set to approximately
match the directly connected training set and re-calculated the results. Since the 5-fold
cross-validation resulted in the finding that the initial 80% training/20% testing split of
data was sufficient we reused the same training and testing subsets here.

The proxy training set was divided into randomly selected subsets of 155,666 flows to
be approximately the same size as the full non-proxy training set of 155,206 flows. The
flows were selected at random and without replacement to fully distribute all flows. We
concatenated each subset with the direct set (Figure 4.3) and recalculated the classification
tree for each pair. After we completed the calculations, we averaged the results to find a
new classifier ratio of 1.134387097.

We divided the test set of proxied flows in the same manner and finished with subsets of
38,888 proxy flows each concatenated to the set of 38,653 testing direct flows. We then
evaluated the classifier against each test subset and filled in a confusion matrix for each.
From that, we calculated the performances and then averaged the results to find the figures
in Table 4.5 under the column for the initial classifier results.

The results show that by using the new classifier ratio, all performance categories, including
NPV, were 99% correct.

We again incorporated methods from Orange on the entire data set to build confidence that
there was not just an optimal split of training and testing flows. Our program randomly,
and with replacement, selected a matching number of flows from the proxy set as was in
the full direct set. It then ran a 5-fold cross validation using a classification tree learner to
generate the candidate classifier of 1.134, evaluate it, and report the results. We executed
the program in a loop over 100 iterations and then calculated the average. Although the new
classifier of 1.134 was only calculated to the nearest thousandths, it performed the same,
as shown in the third column of Table 4.5. The measures are only shown to two decimal
places in this case because of a limitation in the way Orange methods returned calculations.

33

d

Subset 1

Subset 2

Subset 3

Subset n

Subset 1

Subset 2

Subset 3

Subset n

d

d

d

d

Set of all proxy flows Set of all direct flows
(d)

Set of concatenated
flows

|Subset| ≈ |d|

Figure 4.3: Modified subset method on data set. The subset of proxy flows that was separated
for training was divided into further subsets of approximately the same size as the set of direct
flows that was separated for training. Each of these proxy sub-training subsets was concatenated
with the training subset of direct flows and saved as a combined set. The same method was
used to subdivide and concatenate the testing subsets for evaluation.

Table 4.5: Final results of classifier performances with sample bias removed
Measure Initial 1.134387097 Final 1.134
Accuracy 0.987997614 0.99
Precision 0.987616051 0.99
NPV 0.988382302 0.99
Recall 0.988462326 0.99
Speci f icity 0.987530075 0.99
F1 0.988038971 0.99

4.5 Evaluating the Strength of the Classifier
Our results appeared to be very promising; however, we needed to evaluate the classifier
to see how increasing or decreasing it would affect the outcome. This will be useful for
those wishing to adjust which areas can be subject to higher risk. For example, it could
be the case that missing some instances of connections with proxies is acceptable as long
as confidence can be increased that those proxies that were identified were actually true.
To accomplish this we adjusted the classifier 10% both higher and lower then evaluated it
against our data set. Adjusting the optimal classifier of 1.134 by 10% resulted in a new
lower classifier of 1.0206 and a new higher classifier of 1.2474.

4.5.1 Evaluating the New Classifier Against the Full Data Set
The first division of data was into two categories, proxy and direct, to determine how ad-
justing the classifier would impact the detection of a reverse proxy. We randomly selected

34

an equal number of flows from the proxy set and concatenated them to the set of direct
flows. The resulting table was then equal parts of proxy and direct flows. The three classi-
fiers (lower, optimal, and higher) were used to evaluate the data in the table and the results
stored in a confusion matrix. We replaced the randomly selected proxy flows and then re-
peated the process with a new randomly selected set of proxy flows concatenated with the
set of direct flows. This process was repeated ten times and the results averaged to produce
a final confusion matrix. Finally, we calculated the measurements and plotted them to a
graph shown in Figure 4.4.

95
.8
%
	

92
.7
%
	

99
.4
%
	

99
.4
%
	

92
.1
%
	

95
.9
%
	

98
.8
%
	

98
.8
%
	

98
.9
%
	

98
.9
%
	

98
.8
%
	

98
.8
%
	

98
.3
%
	

99
.2
%
	

97
.4
%
	

97
.4
%
	 99

.2
%
	

98
.3
%
	

88.0%	

90.0%	

92.0%	

94.0%	

96.0%	

98.0%	

100.0%	

Accuracy	 Precision	 NPV	 Recall	 Specificity	 F1	

Pe
rf
or
m
an

ce
	 in
	 %
	

Performance	 Category	

Reverse	 Proxy	 Detec6on	 Performance	

1.0206	

1.134	

1.2474	

Figure 4.4: Graph of classifier performance when adjusted by 10% higher and lower. The lower
(1.0206), optimal (1.134), and higher (1.2474) classifiers’ performance measures are compared
against each other.

The results show that the optimal classifier of 1.134 had a better general performance than
when the classifier was adjusted. Decreasing the classifier resulted in better recall and NPV
however, performed worse in all other categories with the most significant drop in precision
and specificity. Therefore, by lowering the classifier we were able to better detect a reverse
proxy at the expense of higher False Positives (FPs).

We observed better performance in precision and specificity when the classifier was in-
creased. Although the performance declined in all other categories, the change was less
significant than when the classifier was decreased. Increasing the classifier by 10% al-
lowed for a slightly better probability that a reverse proxy was present when the classifier
predicted that it was. This improvement however, caused the classifier to miss instances of
reverse proxies in the data set.

35

Our results show that the classifier ratio can be tailored to meet an organization’s goals. If
the objective is to find the highest quantity of reverse proxy servers with the understand-
ing that some will be falsely identified, then the classifier should be lowered. If on the
other hand, the objective is to increase confidence that detected reverse proxies are correct,
then the classifier should be raised. Figure 4.5 illustrates an example of these findings by
showing where the classifier threshold should be set to eliminate all instances of direct, or
non-proxy connections. It also reflects that by doing so, the precision is increased at the
expense of a higher FP rate.

1.134

Cumulative Fraction of Direct Ratios = 1.0

Figure 4.5: The two black lines on this figure represent the optimal classifier of 1.134 (left) and
where the threshold must be adjusted to so that the full set of reverse proxy detections includes
no instances of direct configurations (right).

4.5.2 Evaluating the New Classifier Against Local and Remote Proxy
Configurations

The final area we sought to explore was whether adjusting the classifier had more impact on
connections where the reverse proxy was co-located with the web server or remotely con-
nected. We divided the proxy set of flows into local and remote flows. We then performed

36

the same random sampling and concatenation with the direct set as we did when evaluating
the adjusted classifiers on the full data set. We first evaluated the adjusted classifiers against
the local reverse proxies (Figure 4.6) and then against the remote reverse proxies (Figure
4.7).

Decreasing the classifier did not cause a significant performance change to either the local
or remote proxy configurations when compared to the evaluation against the full combined
set. The greatest difference was in the F1 score where the performance on the local reverse
proxies only dropped by 0.4%, from 95.9% in the full set to 95.5% in the local set. In-
creasing threshold however, impacted the performance of the classifier on the set of local
reverse proxies much more significantly in all categories except precision and specificity.
In this case, performance degradation was as great as 5.2% in recall and 4.7% in NPV.

These findings reinforce the conclusion that tailoring the classifier ratio is an effective
method to adjust confidence in certain areas but comes at the expense of increasing risk
in others. The effects are not equally experienced and may potentially expose a correlation
between the distance of the web server from the reverse proxy and confidence levels. This
introduces an intriguing characteristic to explore further.

37

95
.7
%
	

92
.6
%
	

99
.3
%
	

99
.3
%
	

92
.1
%
	

95
.9
%
	

98
.3
%
	

99
.2
%
	

97
.5
%
	

97
.4
%
	 99

.2
%
	

98
.3
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

88.0%	

90.0%	

92.0%	

94.0%	

96.0%	

98.0%	

100.0%	

Accuracy	 Precision	 NPV	 Recall	 Specificity	 F1	

Pe
rf
om

an
ce
	 in
	 %
	

Performance	 Category	

Remote	 Reverse	 Proxy	 Detec6on	 Performance	

1.0206	

1.134	

1.2474	

Figure 4.6: Graph of adjusted classifier performance on reverse proxies remotely connected to
the web servers

95
.6
%
	

92
.6
%
	

99
.1
%
	

99
.1
%
	

92
.1
%
	

95
.5
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

98
.8
%
	

95
.7
%
	

99
.2
%
	

92
.7
%
	

92
.2
%
	

99
.3
%
	

95
.9
%
	

88.0%	

90.0%	

92.0%	

94.0%	

96.0%	

98.0%	

100.0%	

Accuracy	 Precision	 NPV	 Recall	 Specificity	 F1	

Pe
rf
or
m
an

ce
	 in
	 %
	

Performance	 Category	

Local	 Reverse	 Proxy	 Detec8on	 Performance	

1.0206	

1.134	

1.274	

Figure 4.7: Graph of adjusted classifier performance on reverse proxies locally connected to the
web servers

38

CHAPTER 5:
CONCLUSIONS AND FUTURE WORK

In order to fully trust the source of information that we receive, we must be confident that
it is coming from whomever, or wherever, we expect. Current web requests are answered
with data that may or may not be coming from the expected or intended source. Most
times this is by design in efforts to improve performance or protect valuable web servers.
Unfortunately, the same design aspects appeal to malicious actors by providing a method
to launch attacks from behind the cover of intermediate devices. Because of this, we are
vulnerable to all sorts of malicious activities and must be able to infer the topology in order
to accurately calculate the inherent risk of our transactions.

5.1 Conclusions
A recent study found that there was a measurable difference in TCP RTT ratios from a
client perspective when requesting web pages from servers located either behind a reverse
proxy or accessed directly [3]. Our research discovered that not only is it measurable but
that a precise classifier ratio can detect the presence of a reverse proxy server with nearly
99% accuracy.

To accomplish our goal we established a ground truth set of globally distributed PlanetLab
nodes. This enabled us to know precisely the location and function of every client, reverse
proxy, and web server leaving the only variability to the transport network of the Internet.
We then gathered over 6 million TCP flows from which a machine learning technique was
able to generate a specific, and optimal classifier ratio. Once the classifier was calculated
we tested it against a unique subset of the TCP flows to determine its overall accuracy by
using statistical cross-validation techniques.

We then made adjustments to the optimal classifier to determine the impact it would have on
the ability to accurately or completely detect reverse proxies from a set of collected data.
While performance suffered either way the classifier was adjusted, the most significant
change was in precision and specificity when the classifier was decreased by 10%. Follow-
ing that evaluation, we tested the adjusted classifiers against local, remote, and non-proxy

39

connections. We found that the performance was the same despite the configuration when
the classifier was decreased. Conversely, a large performance degradation was observed in
when detecting local reverse proxy configurations when the classifier was increased.

While there were many lessons learned in conducting this research, the most significant
was that timing analysis alone from only a client’s perspective was sufficient to find an
accurate classifier ratio and detect a reverse proxy. This contributes to many aspects of
network measurements such as network mapping, security, and risk assessments for on-
line transactions. With the knowledge of an accurate classifier we can more easily know
whether our systems are receiving content from an original source or some other, possibly
malicious or spoofed, device.

5.2 Future Work
• Different Data Sets

Our method was applied to a single set of captured data using only PlanetLab nodes.
While PlanetLab is a robust overlay network that is connected via the Internet, it is
mostly homogenous in device types and may have contributed to the highly accurate
classifier. Future work could apply our method to another data set captured from
known clients, proxies, and web servers to see if it results in the same classifier ratio
and accuracy.

• Determine Actual Distance
An assumption can be made that legitimate users of reverse proxy servers locate
them in approximately the same geographical location as the associated web server
or servers. Likewise, one can assume that a reverse proxy that is a great distance from
the origin web server is attempting to avoid detection. This research demonstrated
that it is possible to detect the presence of a reverse proxy in the Internet. Additional
research could potentially use this classifier to determine the actual distance or loca-
tion of a reverse proxy server. Differences in timing ratios among different proxies
and web servers may infer a difference in physical distance between devices.

• Examine Time of Day Effects on Reverse Proxy Detection
Precautions were taken to avoid allowing time-of-day effects to skew our data collec-
tion. Tests were run in parallel where every node connected to every other node so
that traffic congestion would not be isolated to only a portion of a single iteration. We

40

did not examine how time of day impacted measurements but did capture timing data
in the form of pcap files and corresponding traceroute information. This extensive
data set will allow for examination of time-of-day phenomena.

• Use of Different HTTP messages
The only HTTP message used in this research was the GET message. Future work
could identify whether other messages such as PUT, DELETE, or HEAD will result
in the same timing differences.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

List of References

[1] R. Soderbery. (2014, August). How many things are currently connected to the
“Internet of things" (IOT)? [Online]. Available: http://www.forbes.com/sites/quora/
2013/01/07/how-many-things-are-currently-connected-to-the-internet-of-things-iot/

[2] S. Corporation, “Internet security threat report - 2014,” Symantec Corporation,
Mountain View, CA, Tech. Rep., April 2014.

[3] M. Weant, “Fingerprinting reverse proxies using timing analysis of TCP flows,” M.S.
thesis, GSOIS, Naval Postgraduate School, Monterey, CA, 2013.

[4] M. Inc., Merriam-Webster’s collegiate dictionary. Springfield, MA: Merriam-
Webster, 2004.

[5] P. Institute, “2013 cost of cyber crime study: United States,” Ponemon Institute,
Traverse City, MI, Tech. Rep., October 2013.

[6] X. Hu, M. Knysz, and K. G. Shin, “Measurement and analysis of global IP-usage
patterns of fast-flux botnets,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011,
pp. 2633–2641.

[7] J. Postel, “Transmission control protocol,” Internet Engineering Task Force, Fremont,
CA, RFC 793, September 1981.

[8] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 5th ed.
New York: Addison-Wesley, 2010.

[9] R. Fielding and J. Reschke, “Hypertext transfer protocol (HTTP/1.1): Authentica-
tion,” Internet Engineering Task Force, Fremont, CA, RFC 7230, June 2014.

[10] CNN. (2015, May). [Online]. Available: http://www.cnn.com

[11] Office for Civil Rights, HHS, “Standards for privacy of individually identifiable
health information. Final rule.” Federal Register, vol. 67, no. 157, p. 53181, 2002.

[12] J. Wack, K. Cutler, and J. Pole, “Guidelines on firewalls and firewall policy,” National
Institute of Standards and Technology, Gaithersburg, MD, Special Publication
800-41, September 2009.

[13] Alexa Internet, Inc. (2014, August). The top 500 sites on the web (global). [Online].
Available: http://www.alexa.com/topsites

43

[14] X. Hu, M. Knysz, and K. G. Shin, “RB-seeker: Auto-detection of redirection botnets,”
in NDSS Symposium, 2009.

[15] A. R. Khakpour, J. W. Hulst, Z. Ge, A. X. Liu, D. Pei, and J. Wang, “Firewall
fingerprinting,” in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 1728–1736.

[16] G. Lyon. (2014, August). Nmap: Free network security scanner. [Online]. Available:
http://nmap.org

[17] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fingerprinting,”
IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp. 93–108,
April-June 2005.

[18] D. Borman, R. Scheffenegger, and V. Jacobson, “TCP extensions for high perfor-
mance,” Internet Engineering Task Force, Fremont, CA, RFC 7313, September
2014.

[19] Planetlab Consortium. (2014, August). An open platform for developing, deploying,
and accessing planetary-scale services. [Online]. Available: http://www.planet-
lab.org

[20] B. Chun, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, “PlanetLab: An
overlay testbed for broad-coverage services,” ACM SIGCOMM Computer Communi-
cations Review, vol. 33, no. 3, pp. 3–12, July 2003.

[21] C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalanx: Withstanding multimillion-
node botnets,” in NSDI ’08: 5th USENIX Symposium on Networked Systems Design
and Implementation, vol. 8. USENIX Association, 2008, pp. 45–58.

[22] K. B. Knight, J. Lawwill Jr., and B. L. Pulito, “Detecting a reverse proxy and
establishing a tunneled connection therethrough,” September 2003, U.S. Patent
7,272,642.

[23] Google Maps. (2014, August). Planetlabs.

[24] vmware. (2015, May). [Online]. Available: http://kb.vmware.com/selfservice/
microsites/search.do?language=en_US&cmd=displayKC&externalId=2055140

[25] I. Sysoev. (2014, November). [Online]. Available: http://www.nginx.org/en/

[26] D. Wessels. (2013, June). Squid caching proxy. [Online]. Available:
http://www.squid-cache.org/

[27] The Apache Group. (2013, May). Apache - http server project. [Online]. Available:
https://httpd.apache.org/

44

[28] L. MartinGarcia. (2015, February). TCPDUMP & LIBPCAP. [Online]. Available:
http://www.tcpdump.org/

[29] H. Nikšić. (2015, February). GNU Wget. [Online]. Available: http:
//www.gnu.org/software/wget/

[30] A. Schulman and N. Spring, “Pingin’ in the rain,” in Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference. ACM, 2011, pp. 19–28.

[31] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescapè,
“Broadband internet performance: a view from the gateway,” ACM SIGCOMM
computer communication review, vol. 41, no. 4, pp. 134–145, 2011.

[32] University of Ljublijana. (2015, February). Orange data mining - fruitful and fun.
[Online]. Available: http://orange.biolab.si

[33] P. Bokoc. (2015, March). Fedora documentation. [Online]. Available:
http://docs.fedoraproject.org/en-US/Fedora/20/html/Release_Notes/

[34] G. Van Rossum and F. L. Drake Jr, Python reference manual. Amsterdam: Centrum
voor Wiskunde en Informatica, 1995.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

47

	INTRODUCTION
	Problem Statement
	Research Description and Hypothesis
	Organization

	BACKGROUND AND RELATED WORK
	Fundamental Knowledge
	Previous Work

	METHODOLOGY
	Data Collection
	Data Analysis

	RESULTS AND ANALYSIS
	Data Set Acquired
	Initial Training Set Results
	Performance of Initial Classifier on Test Set
	Adjusting the Methodology
	Evaluating the Strength of the Classifier

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work

	List of References
	Initial Distribution List

